3.8: Differentiation Techniques - Logarithmic Differentiation (2024)

  1. Last updated
  2. Save as PDF
  • Page ID
    116576
  • This page is a draft and is under active development.

    • 3.8: Differentiation Techniques - Logarithmic Differentiation (1)
    • Gilbert Strang & Edwin “Jed” Herman
    • OpenStax

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vectorC}[1]{\textbf{#1}}\)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}}\)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}\)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Learning Objectives
    • Use logarithmic differentiation to determine the derivative of products andratios of functions.
    • Use logarithmic differentiation to determine the derivative of functions to functional powers.

    So far, we have learned how to differentiate a variety of functions, including trigonometric, inverse, and hyperbolic functions. In this section, we explore using logarithms to simplify the differentiation process and to take derivatives of functions raised to powers containing functions.

    Logarithmic Differentiation

    At this point, we can take derivatives of functions of the form \(y=(g(x))^n\) for certain values of \(n\), as well as functions of the form \(y=b^{g(x)}\), where \(b>0\) and \(b \neq 1\). Unfortunately, we still do not know the derivatives of functions such as \(y=x^x\) or \(y=x^{\sin{(x)}}\). These functions require a technique called logarithmic differentiation, which allows us to differentiate any function of the form \(h(x)=g(x)^{f(x)}\). It can also be used to convert a very complex differentiation problem into a simpler one, such as finding the derivative of \(y=\frac{x\sqrt{2x+1}}{e^x\sin^3 x}\).

    Example \(\PageIndex{1}\): Using Logarithmic Differentiation

    Find the derivative of \(y=(2x^4+1)^{\tan x}\).

    Solution

    Use logarithmic differentiation to find this derivative.

    \[ \begin{array}{rrclr}
    & \ln{(y)} & = & \ln{(2x^4+1)^{\tan{(x)}}} & \left( \text{Take the natural logarithm of both sides.} \right) \\
    \implies & \ln{(y)} & = & \tan{(x)} \ln{(2x^4+1)} & \left( \text{Expand using properties of logarithms.} \right) \\
    \implies & \dfrac{1}{y}\dfrac{dy}{dx} & = & \sec^2{(x)} \ln{(2x^4+1)} + \dfrac{8x^3}{2x^4+1} \cdot \tan{(x)}& \left( \text{Implicitly differentiate both sides.} \right) \\
    \implies & \dfrac{dy}{dx} & = & y \cdot \left(\sec^2{(x)} \ln{(2x^4+1)} + \dfrac{8x^3}{2x^4+1} \cdot \tan{(x)} \right) & \\
    \implies & \dfrac{dy}{dx} & = & (2x^4+1)^{\tan{(x)}} \left( \sec^2{(x)} \ln{(2x^4+1)} + \dfrac{8x^3}{2x^4+1} \cdot \tan{(x)} \right) &\left( \text{Substitute }y=(2x^4+1)^{\tan{(x)}}. \right) \\
    \end{array} \nonumber \]

    Example \(\PageIndex{2}\): Simplifying a "Tough" Differentiation Problem

    Find the derivative of \(y=\frac{x\sqrt{2x+1}}{e^x\sin^3 x}\).

    Solution

    This problem really makes use of the properties of logarithms and the differentiation rules given in this chapter.

    \[ \begin{array}{rrclr}
    & \ln y & = & \ln\dfrac{x\sqrt{2x+1}}{e^x\sin^3 x} & \left( \text{Take the natural logarithm of both sides.} \right) \\
    \implies &\ln y & = & \ln x+\frac{1}{2}\ln(2x+1)−x\ln e−3\ln \sin x & \left( \text{Expand using properties of logarithms.} \right) \\
    \implies &\dfrac{1}{y}\dfrac{dy}{dx} & = & \dfrac{1}{x}+\dfrac{1}{2x+1}−1−3\dfrac{\cos x}{\sin x} & \left( \text{Differentiate both sides.} \right) \\
    \implies &\dfrac{dy}{dx} & = & y\left(\dfrac{1}{x}+\dfrac{1}{2x+1}−1−3\cot x\right) & \\
    \implies &\dfrac{dy}{dx} & = & \dfrac{x\sqrt{2x+1}}{e^x\sin^3 x}\left(\dfrac{1}{x}+\dfrac{1}{2x+1}−1−3\cot x\right) & \left( \text{Substitute }y=\dfrac{x\sqrt{2x+1}}{e^x\sin^3 x}.\right) \\
    \end{array} \nonumber \]

    Exercise \(\PageIndex{2A}\)

    Use logarithmic differentiation to find the derivative of \(y=x^x\).

    Hint

    Follow the problem solving strategy.

    Answer

    Solution: \(\frac{dy}{dx}=x^x(1+\ln x)\)

    Exercise \(\PageIndex{2B}\)

    Find the derivative of \(y=(\tan x)^ \pi \).

    Hint

    Use the Power Rule (since the exponent \(\pi\) is a constant) and the Chain Rule.

    Answer

    \(y^{\prime}= \pi (\tan x)^{ \pi −1}\sec^2 x\)

    Key Concepts

    • Logarithmic differentiation allows us to differentiate functions of the form \(y=g(x)^{f(x)}\) or very complex functions by taking the natural logarithm of both sides and exploiting the properties of logarithms before differentiating.

    Glossary

    logarithmic differentiation
    is a technique that allows us to differentiate a function by first taking the natural logarithm of both sides of an equation, applying properties of logarithms to simplify the equation, and differentiating implicitly
    3.8: Differentiation Techniques - Logarithmic Differentiation (2024)
    Top Articles
    ACC preview: Can a new contender emerge to challenge Clemson and Florida State?
    Craigslist Dating | Is It Still Really a Thing or Not?
    Design215 Word Pattern Finder
    Camera instructions (NEW)
    Stretchmark Camouflage Highland Park
    Lexington Herald-Leader from Lexington, Kentucky
    Violent Night Showtimes Near Amc Fashion Valley 18
    Sunday World Northern Ireland
    Autozone Locations Near Me
    Carter Joseph Hopf
    Giovanna Ewbank Nua
    Bernie Platt, former Cherry Hill mayor and funeral home magnate, has died at 90
    Hallelu-JaH - Psalm 119 - inleiding
    Calmspirits Clapper
    House Party 2023 Showtimes Near Marcus North Shore Cinema
    2016 Ford Fusion Belt Diagram
    Kvta Ventura News
    Google Feud Unblocked 6969
    Price Of Gas At Sam's
    Missed Connections Dayton Ohio
    Forum Phun Extra
    Account Suspended
    Beryl forecast to become an 'extremely dangerous' Category 4 hurricane
    ABCproxy | World-Leading Provider of Residential IP Proxies
    Used Safari Condo Alto R1723 For Sale
    UMvC3 OTT: Welcome to 2013!
    R&S Auto Lockridge Iowa
    [PDF] PDF - Education Update - Free Download PDF
    3Movierulz
    Craigslist Lake Charles
    Margaret Shelton Jeopardy Age
    Dexter Gomovies
    Rainfall Map Oklahoma
    Shauna's Art Studio Laurel Mississippi
    Franklin Villafuerte Osorio
    Wells Fargo Bank Florida Locations
    Aladtec Login Denver Health
    Litter-Robot 3 Pinch Contact & DFI Kit
    Vip Lounge Odu
    Movies123.Pick
    ATM Near Me | Find The Nearest ATM Location | ATM Locator NL
    140000 Kilometers To Miles
    814-747-6702
    How To Customise Mii QR Codes in Tomodachi Life?
    Ups Authorized Shipping Provider Price Photos
    N33.Ultipro
    8 4 Study Guide And Intervention Trigonometry
    Erica Mena Net Worth Forbes
    Mike De Beer Twitter
    Craigslist.raleigh
    4015 Ballinger Rd Martinsville In 46151
    Latest Posts
    Article information

    Author: Terence Hammes MD

    Last Updated:

    Views: 6163

    Rating: 4.9 / 5 (69 voted)

    Reviews: 84% of readers found this page helpful

    Author information

    Name: Terence Hammes MD

    Birthday: 1992-04-11

    Address: Suite 408 9446 Mercy Mews, West Roxie, CT 04904

    Phone: +50312511349175

    Job: Product Consulting Liaison

    Hobby: Jogging, Motor sports, Nordic skating, Jigsaw puzzles, Bird watching, Nordic skating, Sculpting

    Introduction: My name is Terence Hammes MD, I am a inexpensive, energetic, jolly, faithful, cheerful, proud, rich person who loves writing and wants to share my knowledge and understanding with you.